Zementestrich

Estriche sind Mörtelschichten, die als Fußboden auf einem tragfähigen Untergrund oder auf zwischenliegenden Trennoder Dämmschichten aufgebracht werden. Sie sind nach dem Erhärten unmittelbar nutzfähig oder können einen Belag erhalten.

Wird dem Mörtel als Bindemittel Zement zugegeben, entsteht ein Zementestrich. Zementestriche zeichnen sich durch ihre hohe Festigkeit, einen sehr hohen Verschleißwiderstand und gute Griffigkeit aus. Sie vertragen sowohl hohe als auch tiefe Temperaturen und sind unempfindlich gegen Feuchtigkeit. Zementestriche können im Wohnungs-, Verwaltungsund Industriebau eingesetzt werden. Sie werden ohne zusätzlichen Belag z.B. in Kellerräumen, Garagen, Werkhallen und, bei entsprechender Behandlung, zunehmend auch in Wohn-, Verkaufs- und Gewerberäumen zur besonderen Gestaltung verwendet.

Entsprechend der Verbindung des Estrichs zum tragenden Untergrund und ihrer Funktion unterscheidet man in

- Verbundestrich: mit dem Tragbeton fest verbundener Estrich.
- Estrich auf Trennschicht: Estrich, der vom tragenden Untergrund durch eine dünne Zwischenlage (Trennschicht) getrennt ist.
- Estrich auf Dämmschicht: auch "schwimmender Estrich" genannt, ist ein auf einer Dämmschicht hergestellter Estrich, der auf seiner Unterlage beweglich ist und keine unmittelbare Verbindung mit angrenzenden Bauteilen (z.B. mit Wänden, Stützen, Rohren) aufweist,

- Heizestrich: beheizbarer Estrich, der in der Regel als Estrich auf Dämmschicht ausgeführt wird,
- Hartstoffestrich: hochbeanspruchbarer Estrich mit Gesteinskörnungen aus Hartstoffen nach DIN 1100.

Nach der Herstellungsart werden Estriche z.B. unterschieden in

- Baustellenestrich: Estrich, der aus einem auf der Baustelle gemischten Estrichmörtel besteht oder durch Verwendung von Werkmörtel (Trockenmörtel oder Frischmörtel) hergestellt wird,
- Fließestrich: Estrich(mörtel), der aufgrund seiner sehr weichen Konsistenz durch Zugabe eines Fließmittels selbstnivellierend und ohne nennenswertes Verteilen und Verdichten eingebaut werden kann,
- Fertigteilestrich: Estrich, der aus industriell vorgefertigten plattenförmigen Bauteilen hergestellt wird.

Für die Planung, Ausführung und Prüfung von Estrichen gelten die in Tafel 1 gelisteten Normen. Die europäischen Estrichnormen legen Begriffe fest und beschreiben Eigenschaften sowie Anforderungen an die Produkte. Auf dieser Basis regelt die DIN 18560 ihre Anwendung in Deutschland. In Abhängigkeit vom verwendeten Bindemittel wird in diesen Normen unterschieden in

- CT = Zementestrich (früher ZE)
- CA = Calciumsulfatestrich
- MA = Magnesiaestrich
- AS = Gussasphaltestrich
- SR = Kunstharzestrich

Bild 1: Estricheinbau

Tafel 1: Grundlegende Normen für Estriche

DIN EN 13318	Estrichmörtel und Estriche	12/2000	Begriffe
DIN EN 13813	Estrichmörtel und Estrichmassen – Eigenschaften und Anforderungen	1/2003	Stoffnorm, keine Regelung der Ausführung
DIN EN 13892	Prüfverfahren für Estrichmörtel und Estrichmassen Teil 1: Probenahme, Herstellung und Lagerung der Prüfkörper Teil 2: Bestimmung der Biegezug- und Druckfestigkeit Teil 3: Bestimmung des Verschleißwiderstandes nach Böhme Teil 4: Bestimmung des Verschleißwiderstandes nach BCA Teil 5: Bestimmung des Widerstandes gegen Rollbeanspruchung von Estrichen für Nutzschichten Teil 6: Bestimmung der Oberflächenhärte Teil 7: Bestimmung des Widerstandes gegen Rollbeanspruchung von Estrichen mit Bodenbelägen Teil 8: Bestimmung der Haftzugfestigkeit	2/2003 2/2003 7/2004 2/2003 9/2003 2/2003 2/2003	Probenahmen, Prüfverfahren
DIN 18560	Estriche im Bauwesen Teil 1: Allgemeine Anforderungen, Prüfung und Ausführung Teil 2: Estriche und Heizestriche auf Dämmschichten (schwimmende Estriche) Teil 3: Verbundestriche Teil 4: Estriche auf Trennschicht Teil 7: Hochbeanspruchte Estriche (Industrieestriche)	9/2009 9/2009 3/2006 4/2004 4/2004	Nationale Anwendungsregeln
DIN 18353	ATV Estricharbeiten	4/2010	VOB/C, Techn. Vertragsbedingungen

Die Estriche bzw. Estrichmörtel werden im vorgenannten Normenwerk in ihren Eigenschaften beschrieben, die wiederum durch Prüfungen nachzuweisen sind. Dabei wird unterschieden in "normative Prüfungen" (zwingend) und in "optionale Prüfungen" (wenn vereinbart). Entsprechend der Prüfwerte werden die Estriche bzw. Estrichmörtel in verschiedene Klassen unterteilt. Für die Beschreibung eines Zementestrichs bzw. Zementestrichmörtels CT (Cementitious Screed) sind zwingend erforderlich Angaben zur

- Druckfestigkeit (C),
- Biegezugfestigkeit (F) und ggf. zum
- Verschleißwiderstand (A), z.B. nach Böhme, sofern eine direkte Nutzung des Estrichs im Industriebau vorgesehen ist, zu machen.

Die Eigenschaften des Estrichs müssen vom Entwurfsverfasser der Leistungsbeschreibung angegeben werden, d.h., er muss bei einem Zementestrich mindestens die Druckfestigkeitsklasse C und die Biegezugfestigkeitsklasse F vorgeben. Für die Bezeichnung eines Zementestrichs nach alter Norm reichte die Angabe der Druckfestigkeitsklasse. Ein Vergleich der Estrichbezeichnungen nach früherer und nach aktueller Norm ist in Tafel 4 wiedergegeben.

Die Estrichdicke muss auf die jeweilige Estrichart, die Belastung und den Anwendungszweck abgestimmt sein. Die DIN 18560 empfiehlt als Estrichdicken Werte in 5 mm Abstufung, ab 50 mm Estrichdicke in 10 mm Abstufung. Estriche mit Dicken > 80 mm unterliegen betontechnologischen Grundsätzen und sind in Anlehnung an die DIN 1045 als Betonplatte zu bemessen und auszuführen. Bei Hartstoffestrichen sind die empfohlenen Dicken enger abgestuft (siehe Tafel 13).

Werden die in der DIN 18202 "Toleranzen im Hochbau" festgelegten Maßtoleranzen überschritten, sind bei einem Estrich auf Trennschicht oder einem schwimmenden Estrich Ausgleichschichten erforderlich (Tafel 7).

Zementestriche können hinsichtlich ihres Brandverhaltens der Klasse A 1 zugeordnet werden, wenn der Anteil an organischen Substanzen 1 M.-% nicht überschreitet.

Anforderungen an den Verschleißwiderstand sind nur dann zu stellen, wenn der Estrich unmittelbar und dauernd abnutzenden mechanischen Beanspruchungen ausgesetzt ist. Bei einwandfreier Herstellung, guter Verdichtung und genügend langem Schutz gegen Austrocknen (Nachbehandlung) erreichen Zementestriche Schleifverschleiß-Werte wie in Tafel 8 dargestellt. Ein höherer Verschleißwiderstand kann durch Imprägnieren, Einstreuen von Hartstoffen oder durch Aufbringen eines Hartstoffestrichs erreicht werden. Weitere Kennwerte von Zementestrichen sind in Tafel 9 zusammengetragen.

■ 1 Ausgangsstoffe

Als Bindemittel für Zementestriche sind Zemente nach DIN EN 197, DIN 1164 oder bauaufsichtlich zugelassene Zemente zu verwenden. Häufig wird Zement der Festigkeitsklasse CEM 32,5, für höhere End- und Anfangsfestigkeiten CEM 42,5 eingesetzt. Eine höhere Zementfestigkeit kann die Dauer der Verarbeitbarkeit verringern. Zemente mit langsamer Anfangserhärtung, z.B. CEM 32,5 N, erfordern längere Nachbehandlungszeiten.

Laboruntersuchungen in den zurückliegenden Jahren und praktische Erfahrungen bestätigen die grundsätzliche Eignung von Portlandzement und hüttensand-, kalkstein- und ölschieferhaltigen Zementen mit zwei bzw. drei Hauptbestandteilen für Estriche. Diese Ergebnisse zeigen, dass CEM II- und CEM III/A-Zemente grundsätzlich zur Herstellung zementgebundener Estriche geeignet sind.

Derzeit werden neben Portlandzementen CEM I 32,5 R und CEM I 42,5 R insbesondere die folgenden CEM II-Zemente für die Herstellung von Zementestrichen eingesetzt:

- Portlandkalksteinzement CEM II/A-LL 32,5 R
- Portlandölschieferzement CEM II/B-T 42,5 N
- Portlandhüttenzement CEM II/A-S 32,5 R
- Portlandhüttenzement CEM II/B-S 32,5 R
- Portlandhüttenzement CEM II/B-S 42,5 N
- Portlandkompositzement CEM II/B-M (S-LL) 32,5 R

In bestimmten Anwendungsfällen kann der Einsatz so genannter Estrichschnellzemente sinnvoll sein. Zemente ohne Angabe der

Tafel 2: Zementestriche nach DIN 18560-1, Festigkeitsklassen, Mindestdicken, Anforderungen und Anwendung

Festigkeits- klasse	Charakteris- tische Druck-	Mindestdicken / besondere Anforderungen					Anwendung						
Klasse	festigkeit ²⁾ [N/mm ²]	Verbund- estriche	Estrich auf Trennschicht	Estrich auf Där (Schwimmende		Estrich im Freien	(Beispiele)						
		(einschichtig)	(einschichtig)	unbeheizt	beheizt								
C12 ^{1) a)}	12	_	Gefällebeton	-	_	-	nur für untergeordnete Zwecke, z.B. Höhen- ausgleich						
C20 ^{b)}	20	≤ 50 mm ≥ dreifache des Größt- korns	≥ dreifache des Größt- ≥ 35 mm Mindest- festigkeits-	≥ 35 mm	nm des Größt- kerts- ≥ 30 mm Heizele- en Siehe auch ≥ 30 mm		≥ dreifache des Größt- korns	vorwiegend im Wohnungsbau					
C25				klassen C20 – F3 Siehe auc		(siehe auch Tafel 9) Anforderun- gen an Frost- widerstand nach DIN EN 12620 be- achten							
C30	30		(mit Belag) oder C25 – F4	oder I C25 – F4 I (ohne Belag)	(Bauart A nach DIN 18560 Teil 2.		Wohnungsbau, Verwaltungs- und Industriebau						
C35		(VOE	(VOB/C: nur ≥ F4)		Ab. 3.2.2)								
C40	40									, , , , , , , , , , , , , , , , , , ,	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	(VOB/C: nur ≥ F4)	(VOB/C: nur ≥ F4)
C50	50						Industriebau						
C60 M ³⁾	60	≤ 18 mm ≥ 4 mm ggfs. Über-		s Verbundschich		≤ 18 mm ≥ 4 mm ggfs. Über-	Industriebau, hohe Schlagzähigkeit						
C70 A ³⁾	70	gangsschicht ≥ 25 mm	Übergangssch	Übergangsschicht von mindestens 25 mm			Industriebau, hoher Verschleißwiderstand						
C70 KS ³⁾	70												

¹⁾ Nur mit Belag

Tafel 3: Anforderungen (normativ) für Zementestriche nach DIN EN 13813

Anforderung	Kurzbezeichnung	Klassen	Prüfverfahren nach DIN EN 13892-2/-3
Druckfestigkeit [N/mm²]	C Compressive Strength	(C5C80) z.B. C20 = Druckfestigkeit ≥ 20 N/mm²	Die beiden Probekörperhälften des Biegezugversuches werden auf einer Fläche von 4 cm x 4 cm mit einer Auflast bis zum Bruch belastet
Biegzugfestigkeit [N/mm²]	F Flexural Strength	(F1F50) z.B. F10 = Biegezugfestigkeit ≥ 10 N/mm²	Prisma (4 cm x 4 cm x 16 cm) wird auf zwei Stützen aufgelegt und von oben durch eine "Streifenlast" in Feldmitte bis zum Bruch belastet
Verschleißwiderstand (nur bei direkter Nutzung)	A Abrasion	(A22A1,5) z.B. A9 = Abriebmenge ≤ 9 cm³/50 cm²	Ermittlung der Abriebmenge nach Böhme

Tafel 4: Estrichbezeichnungen nach früherer und aktueller Norm

Bezeichnung alt DIN 18560 (1992)	Bezeichnung aktuell DIN EN 13813 (2003)
ZE 12	CT - C15 - F3 ³⁾
ZE 20 ¹⁾	CT – C25 – F4 ²⁾
ZE 30	CT – C35 – F5
ZE 40	CT – C45 – F6 ³⁾
ZE 50	CT – C55 – F7 ³⁾
ZE 55 M	CT - C70 - F11M - A3
ZE 65 A	CT - C75 - F9A - A6
ZE 65 KS	CT - C75 - F9KS - A1,5

 $^{^{1)}}$ Druckfestigkeit \geq 25 N/mm² – min 20 N/mm², Biegezugfestigkeit \geq 4 N/mm²

Zementhauptbestandteile oder ohne die notwendigen Konformitätsbescheinigungen bzw. Übereinstimmungszeichen sollten nicht eingesetzt werden.

Der Zementgehalt eines Estrichmörtels bzw. Estrichbetons ist zu begrenzen. Er sollte bei üblichen Konsistenzen 450 kg/m³ (bei Estrichen auf Dämmschichten 400 kg/m³) nicht überschreiten.

Die Gesteinskörnung muss DIN EN 12620 "Gesteinskörnungen für Beton" entsprechen, sofern die VOB/C vertraglich vereinbart ist. Der Anteil an Feinanteilen in der Gesteinskörnung soll \leq 3 M.-% betragen. Das Größtkorn ist so groß wie möglich zu wählen, jedoch gilt

- Estrichdicke ≤ 40 mm: Größtkorn ≤ 8 mm
- Estrichdicke > 40 mm: Größtkorn ≤ 16 mm

²⁾ Statistisch abgesichert im Rahmen der werkseigenen Produktionskontrolle "FPC" nach DIN EN 13813

[®] Hartstoffgruppe nach DIN 1100; M = Metall, A = Naturstein und/oder dichte Schlacke, KS = Elektrokorund und Siliziumcarbid

a) Nicht für Estriche nach VOB/C - DIN 18353

b) Nicht für Verbundestriche ohne Belag nach VOB/C – DIN 18353

²⁾ Druckfestigkeit ≥ 25 N/mm² – min 22,5 N/mm², Biegezugfestigkeit ≥ 4 N/mm²

³⁾ In Anlehnung an DIN EN 13813

Tafel 5: Beispiele für die Zuordnung von Estrich-Festigkeitsklassen zu den Beanspruchungen in Anlehnung an [1]

Festig-	Beanspruchungsarten und Baute	en				
keits- klasse	ohne Belag		mit Belag ²⁾			
C20 - F4	sehr geringer Fußgängerver- kehr ¹⁾			Wohnräume		
C35 - F5	geringer Fahrverkehr leichter Fahrzeuge mit weicher Berei- fung bis 10 km/h; innerbetrieb- licher Fußgängerverkehr; keine schleifende Beanspruchung; keine Beanspruchung durch Schlag und Stoß	Kellerräume in Bürogebäuden; Lagerhallen für leichte und elas- tische Güter (Holz, Papier, Gummi, weiche Kunststoffe usw.); untergeordnete Werkstät- ten für kleine Werkstücke; be- triebliche Werkzeugausgaben und Magazine	Fußgängerverkehr; leichter Fahrverkehr mit weicher Bereifung bis 10 km/h; geringe Beanspruchung durch Schlag und Stoß; Absetzen leichter Güter	Wohnräume mit Fußbodenheizung; Büroräume ohne Publikumsverkehr; Fabrikations-, Montage- und Lagerhallen für leichte Güter; Werkstätten für leichte Stücke aller Art; Pkw-Werkstätten; Hallen mit höherem Anspruch auf Reinigung		
C45 - F6	leichter Fahrverkehr von Fahrzeugen mit weicher Bereifung bis 10 km/h; geringer Fußgängerverkehr; mäßige schleifende Beanspruchung; geringe Beanspruchung durch Schlag und Stoß; Absetzen leichter Güter	Fabrikations-, Montage und Lagerhallen für leichte und elas- tische Güter; Werkstätten für leichte, nicht scharfkantige Stücke; Pkw-Werkstätten	starker Fußgängerverkehr; mittelschwerer Fahrverkehr; leichter Gabelstaplerverkehr; mäßige Beanspruchung durch Schlag und Stoß; Absetzen mittelschwerer Güter; Kollern leichter Güter	Büroräume mit Publikumsver- kehr; Fabrikations-, Montage- und Lagerhallen für mittel- schwere Güter; Werkstätten für mittelschwere Stücke; Lkw-Werkstätten und -gara- gen; Lagerhallen für feinkörnige Schüttgüter		
C55 - F7	mittelschwerer Fahrverkehr von Fahrzeugen mit weicher Bereifung bis 20 km/h; leichter Gabelstaplerverkehr mit leichter Bereifung bis 10 km/h; mäßiger Fußgängerverkehr; starke schleifende Beanspruchung; Absetzen mittelschwerer Güter; Kollern leichter, nicht scharfkantiger Güter; mäßige Beanspruchung durch Schlag und Stoß	Fabrikations-, Montage- und Lagerhallen für leichte Güter; Lagerhallen für mittelschwere Güter; Werkstätten für leichte Stücke aller Art; Lkw-Werkstät- ten und Garagen	mittelschwerer Fahrverkehr; mittelschwerer Gabelstaplerver- kehr; mittelschwere Beanspru- chung durch Schlag und Stoß; Absetzen schwerer Güter; Kol- lern mittelschwerer Güter	Fabrikations-, Montage- und Lagerhallen und Werkstätten für schwere Güter u. Stücke; Reparaturwerkstätten für schweres Gerät; Lagerhallen für mittelkörnige Schüttgüter		

¹⁾ Nach VOB/C ist hier bei Verbundestrich ein C25-F4 gefordert

Tafel 6: Maximale Unterschreitungen der Estrichnenndicke in Anlehnung an DIN 18560-1, Tabelle 1

Estrichdicke	lokale Unterschreitung der Nenndicke		
(Nenndicke entspricht Mittelwertanforderung)	maximale zulässige Differenz		
bei Nenndicke zwischen 20 mm und 50 mm	≤ 5 mm	außer bei Hartstoffestrichen	
bei Nenndicke zwischen 60 mm und 80 mm	≤ 10 mm		

Tafel 7: Zulässige Toleranzen für die Ebenheit von Estrichen nach DIN 18202, Tabelle 3

Bauteil/Funktion	Grenzwerte für Ebenheitsabweichungen in mm (Stichmaße) bei einem Abstand der Messpunkte bis					
	0,1 m	1,0 m	4,0 m	10,0 m	15,0 m	
Tragbeton oder Unterbeton zur Aufnahme von Estrichen	5	8	12	15	20	
Flächenfertige Böden, z.B. Estriche als Nutzestriche bzw. zur Aufnahme von Bodenbelägen	2	4	10	12	15	
Flächenfertige Böden mit "erhöhten Anforderungen" (gesondert zu vereinbaren)	1	3	9			

Tafel 8: Schleifverschleiß von Zementestrichen bei sachgerechter Ausführung und Nachbehandlung

	1			
Druckfestigkeitsklasse des Estrichs	Wasserzementwert	Druckfestigkeitsklasse des Zementes	Korngruppe	Abriebmenge nach Böhme (DIN 52108) [cm³/50 cm²]
C30	0,53	CEM 32,5	Sieblinie A/B 8 Sand 0/2 Kiessand 2/8	≤ 15
C40	0,42	CEM 32,5	Sieblinie A/B 16 Sand 0/2 Kiessand 2/8 Kies 8/16	≤ 12
C50	0,38	CEM 42,5	Sieblinie A/B 16 Sand 0/2 Kalksteinsplitt 5/11	≤ 9

²⁾ Verbesserung des Widerstandes gegen Schleifverschleiß sowie gegen Schlag und Stoß ist abhängig von der Beschaffenheit der Beläge; Verbesserung der Aufnahme von Verkehrslasten ist u.a. abhängig von der Dicke der Beläge

Tafel 9: Ausgewählte physikalische Eigenschaften von Zementestrichen

Rutschhemmung ¹⁾ [R = Bewertungsgruppe der Rutschgefahr nach GUV-Regel "Fußböden in Arbeitsräumen und Arbeitsbereichen mit Rutschgefahr", GUV-R 181, 10/2003]	mit Flügelglätter geglättet: R 9 bis R 10 maschinell abgescheibt: R 10 bis R 11 abgerieben: R 12 Besenstrich: R 13
Wärmeausdehnungskoeffizient α	0,012 mm/m je K
Wärmeleitfähigkeit λ (Bemessungswert)	1,35 W/m je K bei einer Rohdichte von 2000 kg/m³
Wasserdampf-Diffusionswiderstandszahl μ (Richtwert)	15 bis 35 nach DIN V 4108-4
elektrischer Ableitwiderstand	10 ⁴ bis 10 ⁸ Ω · cm
Schwindmaß	≥ 0,6 mm/m
Elastizitätsmodul	≈ 30 000 N/mm²

¹⁾ Nach [2], Tabelle 10

Tafel 10: Beispiele für die Zusammensetzung von Zementestrichen, nach [1] bzw. [3]

Druckfestigkeits- klasse des Estrichs	Zementgehalt in kg/m³ bei Korngruppe		Druckfestigkeitsklasse des Zements	Wasserzementwert w/z	Druckfestigkeitsklasse des Tragbetons	
	0/8	0/11	0/16			
C30	410	390	365	CEM 32,5	0,53	C20/25
C40	480	440	420		0,42	
C50		490	470	CEM 42,5	0,38	C30/37

Es empfiehlt sich, die Kornzusammensetzung so zu wählen, dass die Sieblinie in der oberen Hälfte des Bereiches A/B der "Regelsieblinien" nach DIN 1045-2 liegt. Es ist zu beachten, dass zu grobe Sande das Bluten fördern und zu feine Sande eine erhöhte Wasserzugabe erfordern und zum Absanden der Estrichoberfläche führen können.

Der Zusatz von Kunstharzdispersionen kann in bestimmten Anwendungsfällen Vorteile bringen. Je nach Produkt und Dosierung können die Verarbeitbarkeit oder die Haftung des Estrichs am Untergrund verbessert, die Biegzugfestigkeit erhöht, die Rissneigung verringert und die Austrocknung des frischen Estrichs verlangsamt werden. Der Wassergehalt der Dispersionen ist auf den Wasserzementwert anzurechnen.

Bei Flächen im Freien muss der Estrich einen hohen Frost-Widerstand, ggfs. auch einen hohen Frost-Taumittel-Widerstand aufweisen. Dies kann durch die Zugabe von Luftporenbildnern (LP), abgestimmt auf das Größtkorn, erreicht werden.

Die Eignung eines Zusatzmittels ist durch dessen Hersteller für den jeweiligen Anwendungsfall zu belegen. Beim Einsatz verschiedener Zusatzmittel sind diese auf ihre Verträglichkeit untereinander durch eine Erstprüfung zu untersuchen.

Um die gewünschten Eigenschaften zielsicher zu erreichen, sind Zementestriche mit möglichst niedrigen Wasserzementwerten herzustellen. Dies bedeutet i.A., dass – ausgenommen Fließestriche – eine steife bis plastische Konsistenz eingebaut wird. Bei steifer Konsistenz kann es z.B. bei schwimmenden Estrichen zu Verdichtungsschwierigkeiten kommen. Abhilfe schafft hier der Einsatz von verflüssigenden Zusatzmitteln (BV oder FM), mit deren Hilfe die Konsistenz des Mörtels weich bis fließfähig eingestellt werden kann. Estriche sollten jedoch nicht flüssiger eingestellt werden, als für einen sachgerechten, störungsfreien Einbau unbedingt erforderlich.

Anhaltswerte für die Zusammensetzung von Zementestrichen sind in Tafel 10 zusammengestellt. Bei Estrichen der Druckfestigkeitsklassen ≥ C40 muss die Zusammensetzung über eine Erstprüfung bestimmt werden.

■ 2 Bewehrung

Eine Bewehrung ist für Estriche nicht zwingend erforderlich. Dies gilt auch für Estriche auf Dämmschichten. Lediglich bei Zementestrichen auf Dämmschichten zur Aufnahme von Steinund Keramikböden kann nach DIN 18560 Teil 2 eine Bewehrung sinnvoll sein.

Eine Bewehrung kann das Entstehen von Rissen nicht verhindern, jedoch die Rissbreite verringern und helfen, Höhenversätze der Risskanten zu vermeiden. Andererseits kann sie den Einbau und die Verdichtung des Estrichmörtels erschweren. Bei Estrichen auf Dämmschicht ist der lagegenaue Einbau der Bewehrung durch die Biegsamkeit der Stahlmatten und die weiche Unterlage i.A. nicht möglich. Durch das Betreten der Estrichbewehrung während des Einbaus ist mit Verbundstörungen im zuvor fertiggestellten frischem Bereich zu rechnen. Dies kann zur Trennung des Mörtels oberhalb der Bewehrung von der zuerst darunter eingebauten Schicht führen.

Als Bewehrung kommen in Frage

- Betonstahlmatten nach DIN 488-4 mit Maschenweiten bis 150 mm x 150 mm (z.B. N 141, N 94)
- Betonstahlgitter mit Maschenweiten 50 mm bis 70 mm und Stabdurchmessern von 2 mm bis 3 mm, Stahlfestigkeiten ≥ 500 N/mm²

Die Mattenbewehrungen sind an den Stößen mit mindestens 10 cm bzw. einer Maschenweite Überlappung zu verlegen und im Bereich von Bewegungsfugen zu unterbrechen. Ihre Verlegung erfolgt i.A. mittig im Estrichquerschnitt.

Eine Zugabe von Fasern (Stahlfasern, alkalibeständigen Glasfasern, Kunststoff-Fasern) kann die Bildung von Schrumpf- und Frühschwindrissen im Estrich verringern. Aus diesem Grund kann der Einsatz von Fasern insbesondere bei direkt genutztem Estrich von Vorteil sein. Die Wirksamkeit der Fasern bei vorgegebener Zugabemenge und gleichmäßiger Verteilung im Estrichmörtel sollte durch ein Prüfzeugnis nachgewiesen sein. Zu beachten ist, dass die Zugabe von Fasern i.A. die Konsistenz des Estrichmörtels herabsetzt und damit die Verarbeitbarkeit erschwert. Wird der Konsistenzverlust durch mehr Zugabewasser

ausgeglichen, wird die Festigkeit des Estrichs verringert. Eine Erhöhung des Zementleimgehaltes im Mörtel wiederum fördert die Schwindneigung des Estrichs.

■ 3 Verbundestrich

Verbundestrich ist ein mit dem Tragbeton verbundener Estrich. Der Verbundestrich kann nach Erreichen der erforderlichen Festigkeit unmittelbar genutzt oder mit einem Belag versehen werden.

Bei der Planung sollte überlegt werden, ob das nachträgliche Auftragen eines Estrichs auf den Tragbeton sinnvoll ist. Oft kann man den Tragbeton oberflächenfertig herstellen, ohne dass eine später aufzubringende Estrichschicht erforderlich wird.

Die Dicke eines Verbundestrichs soll wenigstens dreimal so groß sein wie der Durchmesser des Größtkorns der im Mörtel verwendeten Gesteinskörnung. Die Mindestdicke für Verbundestriche beträgt somit 25 mm bei 8 mm Größtkorn bzw. 45 mm bei 16 mm Größtkorn. Einschichtige Estriche von über 50 mm Dicke sollten aus Verarbeitungsgründen nicht ausgeführt werden, es sei denn, Konsistenz des Estrichmörtels und Art des Einbaugerätes ermöglichen eine ausreichende Verdichtung auch in der unteren Zone des Estrichs. Hinweise zu Verbundestrichen mit Dicken > 50 mm sind in [4] zu finden. Die Dicke des Verbundestrichs ist für seine Beanspruchbarkeit nicht maßgebend, da infolge des Verbundes die Übertragung aller statischen und dynamischen Einwirkungen auf den tragenden Untergrund sichergestellt ist.

Formänderungen infolge Erhärtung, Temperaturwechsel und Austrocknen erzeugen Zugspannungen im Estrich und Scherspannungen in der Haftfläche. Diese Beanspruchungen können zum Ablösen vom Untergrund führen. Deshalb müssen folgende Punkte beachtet werden:

- sorgfältiges Vorbereiten der Oberfläche des Tragbetons für einen guten Haftverbund,
- Fugen im Estrich nur über Fugen im Tragbeton anordnen,
- Elastizitätsmodul des Estrichs möglichst kleiner als den des Tragbetons einstellen, z.B. durch Zusatz von Kunstharzdispersionen im Estrich,
- schnelle Entwicklung der Biegezugfestigkeit des Estrichs fordern (Nachbehandlung, Zementart).

Voraussetzung für einen guten Haftverbund (bei befahrbaren Flächen Haftzugfestigkeitsklasse mindestens B1,5 nach DIN EN 13813) ist eine ausreichende Rauigkeit des Tragbetons. Außerdem muss dieser sorgfältig von Staub, Öl, Anstrichmitteln, Mörtelresten o. Ä. sowie von losen Teilen gesäubert werden. Das Entfernen von Staub mit einem Besen reicht nicht aus. Für eine optimale Vorbereitung der Oberfläche des Tragbetons kommt nach dem Entfernen des groben Schmutzes nur eine Säuberung mit Wasserstrahl oder durch Absaugen in Frage. Danach sollte der Tragbeton etwa 48 Stunden genässt werden. Vor dem nächsten Arbeitsschritt muss der Tragbeton pfützenfrei und leicht angetrocknet sein. Anschließend sollte eine Haftbrücke aus Zementmörtel, evtl. mit einer Kunststoffdispersion versehen, eingebürstet werden. Die Flächen sind nur soweit vorzubereiten, dass Estrichmörtel und Haftbrücke frisch in frisch eingebaut werden können.

Bei größeren Unebenheiten des Tragbetons, Rohrleitungen oder Kabeln sind Ausgleichschichten erforderlich. Ausgleichschichten dürfen vor dem Auftragen des Verbundestrichs nicht erstarrt oder erhärtet sein, außer es wird eine Haftbrücke aufgebracht.

An Wänden und Stützen wird das Einstellen eines Randstreifens empfohlen, um möglichen Rissen infolge Deckenverformungen vorzubeugen (Bild 2).

Ein Verbundestrich ist zusätzlich mit dem Buchstaben V (Verbund) sowie mit der Nenndicke und ggf. der Verschleißfestigkeit A (nach Böhme) zu bezeichnen. Beispiel:

Estrich DIN 18560 - CT - C30 - F5 - A15 - V25

CT = Zementestrich

C30 = Druckfestigkeitsklasse

F5 = Biegezugfestigkeitsklasse

A15 = Verschleißwiderstandsklasse

V25 = Verbundestrich V, Nenndicke 25 mm

■ 4 Estrich auf Trennschicht

Estrich auf Trennschicht ist ein Estrich, der von dem tragenden Untergrund durch eine dünne, mehrschichtige Zwischenlage (Trennschicht) getrennt ist. Estriche auf Trennschicht werden meist dann ausgeführt, wenn ein Haftverbund mit dem Tragbeton nicht oder nur unvollständig zu erreichen ist. Das kann bei Konstruktionen wie Durchlaufdecken der Fall sein, die beson-

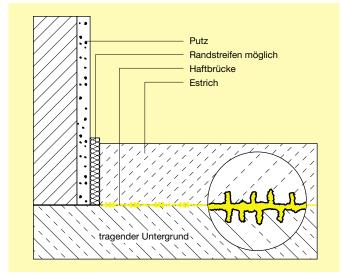


Bild 2: Verbundestrich [5]

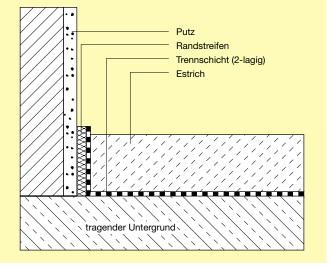


Bild 3: Estrich auf Trennschicht [5]

ders auf Biegung beansprucht werden, oder bei Oberflächen, die infolge einer Beschichtung wasserabweisend sind. Estriche auf diesen Trennschichten können als reibend gelagert gelten. Sie liegen ohne Haftung auf einer festen Unterlage. Diese muss jedoch so ebenflächig sein, dass bei Längenänderungen keine Zwängungen entstehen. Wichtig für die Rissfreiheit des Estrichs ist, dass die Zugspannungen durch Reibung nicht zu groß werden.

Das bedeutet:

- Reibung durch Ebenflächigkeit und gute Gleitschicht gering halten,
- Mindestfestigkeitsklasse C20 F4,
- Fugenabstände um so kleiner wählen, je mehr mit Längenänderungen und höheren Belastungen zu rechnen ist,
- Estrichdicken 35 mm bis 50 mm wählen.

Der Untergrund darf keine punktförmigen Erhebungen, lose Bestandteile, Mörtelreste oder Rohrleitungen aufweisen. Werden beim Untergrund die Maßtoleranzen für die Ebenheit nach DIN 18202 überschritten, ist eine Ausgleichsschicht erforderlich. Trennschichten sind zweilagig auszuführen. Abdichtungen und Dampfsperren gelten als eine Lage der Trennschicht. Für Trennschichten werden z.B. Polyethylenfolien (Mindestdicke 0,1 mm), bitumengetränkte Papiere (Flächengewicht ≥100 g/m²) oder Rohglasvliese (Flächengewicht ≥ 50 g/m²) verwendet. Die Trennstoffe dürfen keine Falten schlagen. Stöße sind mindestens 8 cm weit zu überdecken und mit Klebeband zu sichern.

Estriche auf Trennschicht werden in möglichst quadratische Felder unterteilt. Die Fugenabstände sind in Abhängigkeit von den Estrichdicken festzulegen (siehe Tafeln 14 und 15). Sie sollen 6 m nicht überschreiten. Fugen werden eingeschnitten (Scheinfugen) oder als Arbeitsfugen (Pressfugen) ausgebildet;

die Estrichfläche ist von anderen Bauteilen, die ein Deckenauflager bilden, durch Randfugen (Dehnfugen) zu trennen.

Ein Estrich auf Trennschicht ist zusätzlich mit dem Buchstaben T (Trennschicht) sowie mit der Nenndicke zu bezeichnen. Beispiel:

Estrich DIN 18560 - CT - C30 - F4 - T35

CT = Zementestrich

C30 = Druckfestigkeitsklasse

F4 = Biegezugfestigkeitsklasse

T35 = Estrich auf Trennschicht, Nenndicke 35 mm

Obwohl die Angabe der Druckfestigkeitsklasse nicht gefordert wird, sollte sie zumindest bei der Estrichbestellung genannt werden (hier \geq C20).

■ 5 Estrich auf Dämmschicht (schwimmender Estrich)

Estrich auf Dämmschicht (schwimmender Estrich) ist auf seiner Unterlage beweglich und weist keine unmittelbare Verbindung mit angrenzenden Bauteilen auf. Daher sind als Randbegrenzung z.B. an den Wänden zusammendrückbare Kunststoffstreifen aufzustellen (Bild 4). Die Nenndicken für Zementestriche auf Dämmschichten sind abhängig von der Nutzung (beheizt - unbeheizt), der Nutzlast, der Biegezugfestigkeitsklasse des Estrichs sowie der Art und Dicke der Dämmschicht. Die Mindestdicken für Estriche auf Dämmschicht nach DIN 18560-2 sind in den Tafeln 2, 11 und 12 zusammengestellt. Bei Biegezugfestigkeitsklassen ≥ F7 sind geringere Nenndicken möglich. Die Dicken dürfen jedoch 30 mm nicht unterschreiten und sind ggf. um den Außendurchmesser evtl. vorhandener Heizröhren zu erhöhen. Zur Bemessung von schwimmenden Estrichen bei höheren Lasten als in Tafel 11 angegeben siehe auch [6] und [7]. Radlasten über 10 kN (entspricht einem Gabelstapler bis ca 2,5 t Gesamtgewicht) sind bei schwimmenden Estrichen nicht mehr vertretbar.

Tafel 11: Mindestnenndicken für Zementestriche auf Dämmschichten nach DIN 18560-2

Estrich auf [Estrich auf Dämmschicht		Estrichnenndicke 1)				
	Zusammendrückbarkeit der		Einzellasten bzw. Flächenlasten				
	Dämmschicht c	klasse	- ≤ 2 kN/m²	≤ 2 kN bzw. ≤ 3 kN/m²	≤ 3 kN bzw. ≈ 4 kN/m²	≤ 4 kN bzw. ≈ 5 kN/m²	
unbeheizt	c ≤ 5 mm	CT – F4	≥ 45 mm ²⁾	≥ 65 mm	Keine	Keine	
	C ≤ 5 mm	CT – F5	≥ 40 mm ²⁾	≥ 55 mm	Angabe	Angabe	
	c ≤ 3 mm	CT – F4	Keine Angabe	Keine Angabe	≥ 70 mm	≥ 75 mm	
		CT – F5			≥ 60 mm	≥ 65 mm	
beheizt	Bauart A, Heizrohre auf der Dämmschicht Bauart B, Heizrohre in der Dämmschicht		Mindestnenndicken der unbeheizten Estriche zusätzlich um Außendurchmesser der Heizrohre erhöhen. Rohrüberdeckung ≥ 45 mm bzw. bei Fließestrichen ≥ 40 mm				
			Mindestnenndicken wie bei unbeheizten Estrichen				
	Bauart C, Heizrohre in einem Ausglei	chestrich	Mindestnenndicken wie bei unbeheizten Estrichen				

 $^{^{1)}}$ Bei Dämmschichten \leq 40 mm kann die Estrichnenndicke um 5 mm verringert werden

Tafel 12: Mindestnenndicken für Zementestriche auf Dämmschichten bei Verkehrslasten, nach [7]

Biegezugfestigkeitsklasse für	Estrichnenndicke 1) [mm]							
eine Zusammendrückbarkeit der Dämmschicht c ≤ 3 mm	bei Verkehrslasten							
Dammschicht C≤3 mm	2,0 kN/m ²	3,0 kN/m ²	4,0 kN/m ²	5,0 kN/m ^{2 2)}	7,5 kN/m ^{2 2)}	10 kN/m ^{2 2)}		
CT - F4	45	65	70	75	(95)	(110)		
CT - F5	40	55	60	65	80	(95)		
CT - F7	35	50	55	60	75	80		

¹⁾ Bei Dämmschichten ≤ 40 mm kann die Estrichnenndicke um 5 mm verringert werden. Dicken über 80 mm sind kritisch!

²⁾ Bei höherer Zusammendrückbarkeit der Dämmschicht (≤ 10 mm) muss die Estrichnenndicke um 5 mm erhöht werden. Weichere Dämmschichten sind nicht sinnvoll unter Estrichen, ggf. (bewehrte) Betonplatten einbauen.

² Berechnet mit Bettungszahl KS = 100 MN/m³ (Wärmedämmschichten: Einsatzbereich DEO, Zusammendrückbarkeit dh oder ds)

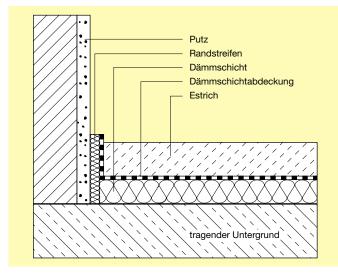


Bild 4: Estrich auf Dämmschicht, Wandanschluss [5]

Unter Stein- und keramischen Belägen beträgt die Mindestdicke eines Zementestrichs auf Dämmschicht grundsätzlich 45 mm. Estriche auf Dämmschicht sind zusätzlich mit den Buchstaben S (schwimmend) und, sofern zutreffend, mit H (Heizestrich) sowie mit der Nenndicke zu bezeichnen. Beispiel:

Estrich DIN 18560 - CT - C20 - F4 - S70 - H45

CT = Zementestrich

C20 = Druckfestigkeitsklasse

F4 = Biegezugfestigkeitsklasse

S70 = schwimmend, Nenndicke 70 mm

H45 = als Heizestrich mit einer Überdeckung der Heizelemente von 45 mm

Obwohl der Planer gemäß DIN 18560 keine Druckfestigkeitsklasse bei schwimmenden Estrichen vorgeben muss (abweichend von der DIN EN 13813), wird empfohlen, mindestens die Druckfestigkeitsklasse C20 vorzusehen.

Der tragende Untergrund muss zur Aufnahme des schwimmenden Estrichs trocken und eben sein. Ebenheit und Winkeltoleranzen müssen der DIN 18202 entsprechen. Schwankungen in den Estrichdicken sollen vermieden werden. Eventuell vorhandene Rohrleitungen sind festzulegen und durch Ausgleichschichten so auszufüllen, dass eine ebene Fläche zur Aufnahme der Dämmschicht entsteht. Wird schwimmender Estrich im Gefälle ausgeführt, so muss das Gefälle bereits im tragenden Untergrund vorhanden sein, um eine gleichmäßige Schichtdicke zu gewährleisten.

Falls Wände verputzt werden sollen, muss der Putz vor dem Verlegen der Dämmschicht bis zum Untergrund durchgezogen sein (Bild 4). Die Dämmstoffe werden maximal zweilagig in der Regel direkt auf der Betondecke mit dichten Stößen und im

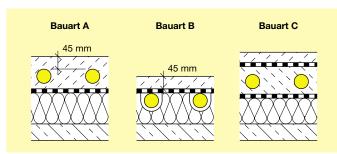


Bild 5: Bauarten von Heizestrichen [5]

Verband vollflächig verlegt. Um ein Eindringen von Wasser und Zementleim in die Dämmschicht zu vermeiden, wird diese vor dem Einbau des Estrichs z.B. mit einer Polyethylenfolie von mindestens 0,1 mm Dicke (bei Heizestrichen mindestens 0,15 mm) abgedeckt und an den Rändern bis zur Oberkante des (schalldämmenden) Randstreifens hochgeführt. Die Folienbahnen müssen sich an den Stößen mindestens 8 cm überlappen.

Dämmstoffe für Estriche sollen sowohl der Luft- und Trittschalldämmung als auch der Wärmedämmung dienen. Bei Dämmstoffen sind i.W. Angaben der Lieferdicke, der Zusammendrückbarkeit und Druckbelastbarkeit, der dynamischen Steifigkeit (Trittschall), der Wärmeleitfähigkeit und der Wasseraufnahme gefragt. Als Dämmstoffe werden angewendet: Polystyrol-Hartschaum (EPS), Extrudierter Polystyrol-Hartschaum (XPS), Mineralfaser (Steinwolle oder Glaswolle) und Holzweichfaserplatten (siehe auch DIN 4108-10).

Ein schwimmender Estrich lässt sich aufgrund der Rückfederung des Dämmstoffes nur schwer verdichten. Aus diesem Grunde sollte die Konsistenz des Estrichmörtels, ggf. durch Zugabe von verflüssigenden Zusatzmitteln, so weich wie möglich gewählt werden. Soll frischer Estrichmörtel in Schubkarren o.ä. auf der Dämmschicht transportiert werden, so sind zum Schutz der Dämmschicht z.B. Holzbohlen zu verlegen.

■ 6 Heizestrich

Heizestrich ist ein über Warmwasserrohre oder Heizdrähte beheizbarer Estrich, der in der Regel auf einer Dämmschicht ausgeführt wird. Üblich sind Warmwasser-Fußbodenheizungen (max. 55 °C im Bereich der Rohre) und Elektro-Fußbodenheizungen (max. 65 °C im Bereich der Heizelemente).

Bei Warmwasser-Fußbodenheizungen (Bild 5) liegen die Heizrohre entweder

- im Estrich über der Dämmschicht (Bauart A),
- in der Dämmschicht unter dem Estrich (Bauart B) oder
- in einem Ausgleichestrich über der Dämmschicht (Bauart C).

Die Mindestnenndicken und Biegezugfestigkeitsklassen für Heizestriche sind Tafel 11 zu entnehmen. Wenn DIN 18353 (VOB/C) nicht zu beachten ist und die Biegezugfestigkeitsklasse des Estrichs > F5 ist, kann bei Bauart A die Rohrüberdeckung bis auf 30 mm verringert werden. Hierzu ist aber ein spezieller Nachweis erforderlich, der die Eignungsprüfung einer Probe mit eingebettetem Rohr umfasst.

Heizkreise und Estrichfelder sind aufeinander abzustimmen. Bewegungsfugen dürfen nicht von Heizelementen gekreuzt werden. Randstreifen müssen bei Heizestrichen eine Bewegung von mindestens 5 mm ermöglichen. Ihre Bemessung erfolgt in Abhängigkeit von der zu erwartenden Temperaturdifferenz und dem Wärmeausdehnungskoeffizient (0,012 mm/m je K) von Zementestrichen. Eine starre Verbindung darf an keiner Stelle vorhanden sein. Die Lage der Warmwasserrohre und der Heizdrähte ist vor dem Estricheinbau zu fixieren.

Dem Fugenplan ist bei Heizestrichen besondere Aufmerksamkeit zu schenken. Fugenart, Fugenverlauf und Fugenabstände sind in Abhängigkeit von den Heizkreisen, dem Belag, der Bodengeometrie und der Estrichdicke durch den Planer festzulegen. Feldgrößen von 40 m² bis 65 m² sind entsprechend den Eigenschaften der Belagstoffe evtl. möglich [7]. Eine zu frühzeitige Beheizung und zu hohe Temperaturen führen zu Schäden im Estrich. Die Heizung wird üblicherweise erst drei Wochen nach Einbau des Estrichs in Betrieb genommen. Bei dem Aufheizen eines Heizestrichs wird unterschieden in das Funktionsheizen (Nachweis des Heizungsbauers für die Erstellung eines mängelfreien Gewerkes) und das Belegreifheizen (Erreichen der maximalen Längendehnung des Estrichs und Austreiben der Estrichfeuchte bis zur Belegreife).

Es ist sinnvoll, das Belegreifheizen mit dem Funktionsheizen des Heizungsbauers in einem Arbeitsgang zusammenzulegen. Letzteres ist ein Leistungsbestandteil nach DIN 18380 (VOB/C) und ist in DIN EN 1264-4 geregelt – allerdings können die dabei zulässigen Temperatursprünge durchaus über 40 K liegen und damit Schäden am Estrich verursachen. Die Funktionsprüfung im Rahmen des Belegreifheizens erfordert fünf zusätzliche Temperaturregelungsvorgänge mehr als bei reinem Funktionsheizen. Es wird aber bei dem Zusammenlegen beider Heizvorgänge ein bis um eine Woche früherer Belegbeginn möglich.

Die Vorlauftemperatur sollte, beginnend bei $+25\,^{\circ}$ C, täglich um max. 10 K (Nachtabsenkung ausschalten!) gesteigert werden, bis zuletzt die max. Vorlauftemperatur von 55 $^{\circ}$ C erreicht wird. Diese Temperatur wird bis zur Belegreife konstant gehalten. Danach wird in Schritten von 10 K die Temperatur zurückgeregelt. Formblätter zu diesem Verfahren siehe [8] und [9].

Wenn Beläge aus Holz, Fliesen, Naturstein oder anderen wasserdampfhemmendem Material vorgesehen sind, folgt ein weiterer Heizgang:

- Aufheizen bis zum Erreichen der Vorlauftemperatur mit max.
 10 K Erhöhung pro Tag,
- Vorlauftemperatur 2 Tage halten und dann
- Estrichtemperatur mit max. 10 K pro Tag bis zur Umgebungstemperatur absenken.

Abschließend ist die Estrichfeuchte mittels der CM-Methode zu kontrollieren [10].

■ 7 Hartstoffestrich

Hartstoffestrich ist ein Zementestrich unter Verwendung von Hartstoffen nach DIN 1100. Er besteht entweder nur aus der

Bild 6: Ausbringen des Hartstoffestrichs frisch in frisch

Hartstoffschicht, oder aber aus zwei Schichten, der obenliegenden Hartstoffschicht und einer darunter liegenden Übergangsschicht. Hartstoffestriche werden bei Industrieböden aufgebracht, die durch Art, Größe und/oder Häufigkeit der Beanspruchung sehr stark belastet werden.

Hartstoffestriche werden in der Regel als einschichtiger Verbundestrich (Hartstoffschicht) frisch in frisch mit einer Mindestdicke von 4 mm auf den Tragbeton eingebaut.

Die Hartstoffschicht kann auch auf den erhärteten Tragbeton als Hartstoffestrich aufgebracht werden, wenn die Oberfläche des Tragbetons genügend eben, rau und sauber ist (ggf. Untergrund durch Fräsen oder Strahlen vorbehandeln) und eine Haftbrücke aufgetragen wurde. Der Tragbeton sollte in diesem Fall eine Festigkeitsklasse \geq C25/30 und eine Oberflächenzugfestigkeit von \geq 1,5 N/mm² aufweisen.

Für Hartstoffestriche werden nach DIN 18560-7 drei Beanspruchungsgruppen unterschieden. Die dafür einzuhaltenden Nenndicken sind Tafel 13 zu entnehmen.

Tafel 13: Anforderungen an zementgebundene Hartstoffestriche nach DIN 18560-7

Beanspru-	Beanspruchung durch Flurfahrzeuge (Bereifungsart ^{1) 2)} , Arbeitsabläufe und Fußgängerverkehr)	F 9A ³⁾		F 11M ³⁾		F 9KS ³⁾	
chungsgruppe		Nenn- dicke [mm]	Verschleißwider- stand nach Böhme i.M. [cm³/50cm²]	Nenn- dicke [mm]	Verschleißwider- stand nach Böhme i.M. [cm³/50cm²]	Nenn- dicke [mm]	Verschleißwider- stand nach Böhme i.M. [cm³/50cm²]
1	Stahl- und Polyamidreifen	≥ 15	≥ 8	≥ 8		≥ 6	
(schwer)	Bearbeiten, Schleifen und Kollern von Metallteilen, Absetzen von Gütern mit Metallgabeln						
	≥ 1 000 Personen/Tag						
II (mittel)	Urethan-Elastomerreifen (Vulkolan) und Gummi	≥ 10		≥ 6	≤ 4	≥ 5	≤2
	Schleifen und Kollern von Holz, Papierrollen und Kunststoffteilen						
	100 - 1000 Personen/Tag						
III	Elastik- und Luftreifen	≥ 8		≥ 6		≥ 4	
(leicht)	Montage auf Tischen						
	≤ 100 Personen/Tag						

¹⁾ Gilt nur für saubere Bereifung. Eingedrückte harte Stoffe und Schmutz erhöhen die Beanspruchung

²⁾ Maximale Kontaktpressung 40 N/mm²

⁹ Hartstoffgruppe nach DIN 1100; A = Naturstein und/oder dichte Schlacke, M = Metall, KS = Elektrokorund und Siliziumcarbid

Ein zweischichtiger Hartstoffestrich im Verbund mit dem Tragbeton wird dann eingebaut, wenn ein einschichtiger Hartstoffestrich zu dick werden würde. In diesen Fällen wird auf den erhärteten Tragbeton zunächst eine Übergangsschicht (ohne Hartstoffe) aufgebracht, auf der dann die Hartstoffschicht zum Liegen kommt. Die Übergangsschicht muss mindestens 25 mm dick sein und der Festigkeitsklasse C30 oder größer entsprechen.

Bei Hartstoffestrichen auf Trenn- oder Dämmschichten (z.B. Dachparkdeck über beheizten Räumen) sind Übergangsschichten immer erforderlich. Die Dicke der Übergangsschicht muss mindestens 80 mm betragen und der Festigkeitsklasse C35 – F5 entsprechen. In Abhängigkeit von der Dämmschichtart und -dicke sowie der Verkehrslast können größere Dicken der Übergangsschicht erforderlich werden. Eine Übergangsschicht darf nicht zur Herstellung eines Gefälles auf waagrechten Flächen verwendet werden. Die Hartstoffschicht ist frisch in frisch auf die Übergangsschicht herzustellen; bei Schichtdicken ab 10 mm auch mittels Haftbrücke auf die erstarrte Übergangschicht. Für Übergangs- und Hartstoffschicht ist Zement gleicher Art und Festigkeitsklasse zu verwenden.

Hartstoffestriche werden nach dem Einbringen in der Regel mit Scheiben- oder Tellerglättern abgerieben und danach flügelgeglättet. Ein vorhergehendes Abpudern mit Zement und/oder Vornässen mit Wasser ist nicht zulässig, da derartig behandelte Estrichoberflächen rissempfindlich sind und zum Abblättern neigen. Für griffige Oberflächen ist ein abschließender Besenstrich sinnvoll. Aufgrund der hohen Zementgehalte sind Hartstoffestriche besonders sorgfältig nachzubehandeln.

Ein zweischichtiger Hartstoffestrich ist z.B. wie folgt zu bezeichnen: Hartstoffestrich DIN 18560 – CT – C60 – F10 – A1,5 – DIN 1100 – A – V10/30

CT = Zementestrich

C60 = Druckfestigkeitsklasse F10 = Biegezugfestigkeitsklasse

A1,5 = Verschleißwiderstandsklasse nach Böhme

DIN 1100 = Hartstoffe nach DIN 1100

A = Hartstoffe Gruppe A = Naturstein und/oder dichte

Schlacke

V10/30 = Verbundestrich V mit Nenndicke 10 mm für Hartstoffschicht und 30 mm für die Übergangsschicht

Zur Erhöhung des Verschleißwiderstandes können alternativ Hartstoffe (üblich sind 2 kg/m² bis 3 kg/m²) mit Hilfe eines Streuwagens auf den noch frischen Tragbeton eingestreut und maschinell eingearbeitet werden. Diese Möglichkeit wird zwar in der DIN 18560-7 erwähnt, das Ergebnis darf aber nicht mit einem Hartstoffestrich im Sinne der DIN 18560-7 gleichgesetzt werden. Erfahrungsgemäß werden bei einer Hartstoffeinstreuung die gewünschten Verschleißeigenschaften der Nutzungsoberfläche häufig nicht erreicht. Dies gilt insbesondere bei Beton mit einem Wasserzementwert ≤ 0,45. Diese so bearbeiteten Flächen neigen dazu, bei Zugluft und hohen Temperaturen an der Oberfläche sehr schnell auszutrocknen, so dass ein sicherer Verbund zwischen Beton und Hartstoff nicht zu erzielen ist. Andererseits sacken bei sehr weich eingestelltem Tragbeton Hartstoffeinstreuungen ab und bleiben damit ohne Wirkung. Zu beachten ist, dass bei Betonen mit Luftporen das Luftporensystem durch maschinelles Abreiben und Glätten nachteilig verändert werden kann.

Bild 7: Fertigteilestrich aus zementgebundenen Platten

Anmerkung: Bei Industrieböden aus Beton können Hartstoffeinstreuungen gemäß DIN 1045-2 als Oberflächenvergütung eines Tragbetons (≥ C 35/45 bzw. C 30/37 (LP)) eingesetzt werden, der die Anforderungen an die Expositionsklasse XM3 (sehr starke Verschleißbeanspruchung) zu erfüllen hat.

■ 8 Fließestrich

Zementgebundener Fließestrich ist ein Mörtel, der entweder selbstnivellierend ist oder nur eines geringen Verteilungs- und Verdichtungsaufwandes bedarf. Zementgebundene Fließestrichmörtel können für alle Estricharten eingesetzt werden. Für die Ausgangsstoffe ist bei Fließestrichen eine besonders hohe Gleichmäßigkeit zu fordern. Dies gilt insbesondere für die Qualität und Zusammensetzung der verwendeten Gesteinskörnungen. Werksgemischte Mörtel sind zu bevorzugen. Als Größtkorn sind 4 mm bis 8 mm üblich. Zusatzstoffe können die Kornverteilung im Feinstkornbereich verbessern. Ein besserer Effekt ist jedoch z.B. mit CEM II-Zementen (Portlandkompositzemente) zu erreichen, die sich aufgrund eines besonders abgestimmten Kornaufbaus positiv auf die Verarbeitungseigenschaften des frischen Estrichs auswirken.

Zusatzmittel wie Fließmittel (FM) wirken wasserreduzierend bei gleicher Verarbeitbarkeit des Estrichmörtels. Bei Einsatz von Zusatzmitteln (besonders auch im Hinblick auf eine ausreichend lange Verarbeitbarkeitszeit) sind stets Wirksamkeitsprüfungen mit der vorgesehenen Estrichzusammensetzung durchzuführen. Um Schwankungen des Gesamtwassergehaltes möglichst niedrig zu halten, ist die Feuchte der Gesteinskörnungen laufend zu kontrollieren. Bei der Verarbeitung von Fließestrich ist auf eine gute Vorarbeit, sorgfältigsten Einbau und ein behutsames Umgehen mit dem jungen Estrich zu achten. Alle Vorkehrungen sind so zu treffen, dass ein reibungsloser Einbau möglich ist. Detaillierte Angaben zu den vorbereitenden Arbeiten, zum Einbau der Randdämmstreifen, der Dämmung und der Folie, zum Einbau selber sowie den Folgearbeiten und der Nachbehandlung sind in [11] enthalten. Zu beachten ist weiterhin, dass ein Fließestrich durch das dichtere Gefüge deutlich langsamer austrocknet als ein herkömmlicher Zementestrich.

Der junge Estrich ist gegen Zugluft und starke Sonneneinstrahlung sorgfältig zu schützen. Zu seiner Nachbehandlung dürfen keine Folien aufgelegt werden, da es sonst nach dem Entfernen der Folie beim darauffolgenden Austrocknen an der Oberfläche zu Verformungen und Rissbildung infolge extremer Feuchtegradiente im Estrichquerschnitt kommen kann. Fließestrich darf frühestens nach sieben Tagen durch Folgegewerke belastet werden.

Bild 8: Anschleifen eines Zementestrichs

Auch vorgefertigte zementgebundene Platten oder Bauteile können zur Herstellung von Estrichen verwendet werden (Bild 7). Sie werden neben anderen Baustoffen in der DIN 18340 "Trockenbauarbeiten" behandelt. Für die Verwendung der vorgefertigten Estrichelemente spricht die leichte Handhabung, die einfache Verarbeitung, die geringe Einbauhöhe, die Unempfindlichkeit gegen Risse und Randabsenkungen sowie insbesondere die nicht oder nur gering vorhandene Restfeuchte und damit eine deutliche Verkürzung der Wartezeiten bis zur Belegreife.

Als Fügetechnik werden vorwiegend Falztechniken, bei Betonplatten auch der kunstharzvergossene stumpfe Stoß eingesetzt. Zum Höhenausgleich unebener Untergründe dient meist eine Trockenschüttung (z.B. Blähschiefer). Die Dicken der Estriche liegen in der Regel zwischen 15 mm und 30 mm. Sie können je nach Anforderung an die Tragfähigkeit und den Schallschutz ein- oder zweischichtig verlegt werden. Bei zweischichtiger Verlegung erfolgt zumeist eine Verschraubung und/oder eine Verklebung der oberen mit der unteren Plattenschicht.

Fertigteilestriche werden entweder mit oder ohne Belag genutzt. Die z.B. möglichen Betonwerksteinstrukturen von Betonplatten eröffnen ohne weiteren Belag einen weiten Gestaltungsspielraum.

Zementgebundene Fertigteilestriche können auch auf einer Dämmschicht verlegt und als Heizestriche eingesetzt werden. Sie erreichen je nach Produkt Druckfestigkeiten bis 50 N/mm² (C50) und Biegezugfestigkeiten bis ca. 11 N/mm² (F10) und sind damit sowohl für Wohn- und Gewerbeflächen als auch für Industrieböden geeignet. Durch ihre geringen Dicken und das damit verbundene niedrige Flächengewicht ist ihre Verlegung auch auf Holzbalkendecken möglich, was z.B. für das Bauen im Bestand von Vorteil sein kann.

■ 10 Gestaltete und farbige Estriche

Die wohl schönste Ausprägung, Fußböden durch Gestaltung und Einfärbung aufzuwerten und ohne weiteren Belag zu nutzen, ist bei Estrichen der Terrazzo, der sich vor über 100 Jahren auch in Deutschland etabliert hat. Die häufig von Künstlern entworfenen und von Meistern ihres Handwerks ausgeführten Terrazzoböden haben natürlich ihren Preis und sind damit besonderen Nutzungen vorbehalten. Eine preisgünstigere Alternative zum Terrazzo sind Zementestriche, die durch Einfärbung

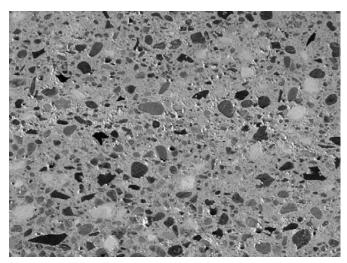


Bild 9: Farbiger und geschliffener Estrich

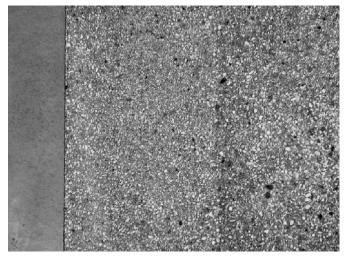


Bild 10: Zementestrich, ungeschliffen (links) und unterschiedlich intensiv geschliffen

und/oder Schleifen bzw. Beschichtungen mit zementgebundenen, fließfähigen Feinmörteln optisch aufgewertet werden [12] (Bilder 9 und 10).

Für die Einfärbung von Estrichen eignen sich Farbpigmente. Der zusätzliche Einsatz eines Weißzementes führt zu besonders klaren und kräftigen Farben. Pigmente werden in nahezu allen Farben angeboten. Sie werden in der Praxis als Pulver, Flüssigfarbe oder Granulat eingesetzt. Übliche Dosierungen (bis 5 M.-% bezogen auf die Zementmasse) haben nur geringen Einfluss auf die Festigkeit des Estrichs.

Farbe und Form ausgewählter Gesteinskörnungen entfalten ihre volle Wirkung, wenn sie durch Abschleifen des oberflächigen (ggfs. farbigen) Zementsteins freigelegt werden. Die Farbpalette möglicher Gesteinskörnungen reicht von weiß (Marmor, Kalkstein) über gelb, rot, blau und grün bis schwarz (Basalt). Bei geringerem Gestaltungsanspruch kann auch ein Standardestrich durch Schleifen aufgewertet werden.

Das Schleifen von Zementestrichen erfolgt trocken mit Diamantschleifgeräten in meist drei Arbeitsgängen: Grobschliff, Mittelschliff und Feinschliff. Je feiner geschliffen wird, um so intensiver wirkt die Eigenfarbe des Gesteinkornes. Das Schleifen hat zudem den Vorteil, dass solche Böden einem geringeren Verschleiß unterliegen und die Neigung zur Netzrissbildung an der Oberfläche verringert wird. Jeder geschliffene Boden ist ein

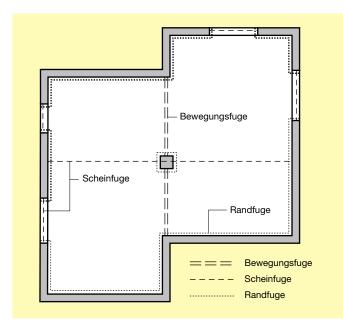


Bild 11: Beispiel eines Fugenplans [5]

Unikat; typisch ist, insbesondere bei eingefärbten Estrichen, ein lebhaftes, z.T. "wolkiges" Erscheinungsbild.

Oberflächenbehandlungen zum Schutz gegen Verschmutzungen und zur Pflege geschliffener Estriche in Form von Versiegelung, Konservierung oder Imprägnierung werden empfohlen und sollten je nach technischen oder optischen Ansprüchen durchgeführt werden. Eine Oberflächenbehandlung kann die Farbwirkung z.B. geschliffener Estriche deutlich vertiefen, die Wirkung ist anhand von Erprobungsflächen abzuschätzen. Je nach Anforderung können Wachse und Steinöle, Silane, Siloxane, Silikone, Acrylate, Epoxidharze aufgetragen bzw. eine Kristallisation, Verkieselung oder Fluatierung vorgenommen werden.

Bei zementgebundenen Feinmörteln zur Beschichtung von Estrichen handelt es sich um selbstnivellierende Mörtel, die einerseits zum Ausgleich von Unebenheiten verwendet werden, andererseits insbesondere bei kleineren Estrichflächen (bis 100 m²) durch Pigmentierung kräftige und gleichmäßige Einfärbungen erzeugen.

Weitere Gestaltungsmöglichkeiten können mittels verschiedener Glätt- und Reibetechniken bei der Oberflächenbehandlung frischer Zementestriche erzeugt werden (Schleier- und Wolkenbildung, Marmorierung). Auch Stempeltechniken zur Strukturierung der frischen Estrichoberfläche sind möglich.

■ 11 Fugen, Fugenplan

Fugen in Estrichen dienen der Begrenzung von Spannungen und sollen einer unkontrollierten Rissbildung vorbeugen.

Es wird unterschieden in

- Bewegungsfugen
- Scheinfugen
- Arbeitsfugen

Bewegungsfugen, auch Dehn- oder Raumfugen genannt, trennen Estrichfelder voneinander über ihre gesamte Dicke. Sie ermöglichen zwängungsfreie Verformungen der einzelnen Estrichfelder infolge Schwinden, Temperatureinwirkung oder Belastung in horizontaler und vertikaler Richtung. Bewegungsfugen werden über Bauwerksfugen im Tragbeton, zur Trennung von Einbauten oder zur Estrichfeldbegrenzung angeordnet; bei Estrichen auf Trenn- oder Dämmschicht auch an aufgehenden Bauteilen wie z.B. Wänden (Randfugen). Die Fugenbreite hängt von den zu erwartenden Verformungen ab. Die Breiten der Bewegungsfugen sollten bei den auf 8 m zu begrenzenden Feldlängen 8 bis 10 mm nicht unterschreiten. Die Randfugen sollten Verformungen von mindestens 5 mm ermöglichen.

Bewehrungen sind an Bewegungsfugen zu unterbrechen. Bei sehr hohen Verkehrslasten (≥ 15 kN/m²) sind Dübel bzw. Fugenprofile gegen einen Höhenversatz der Estrichfelder einzulegen. Der Einbau von Abschlussprofilen zur Erzielung eines geraden Fugenverlaufes hat sich bewährt. Bei befahrenen Flächen empfiehlt es sich, die Fugenkanten des Estrichs mit im Estrich verankerten Eckprofilen zu schützen.

Scheinfugen, auch Schwindfugen genannt, bilden Sollbruchstellen, um eine kontrollierte Rissbildung beim Verkürzen des Estrichs, z.B. infolge Schwinden des Estrichs, einzuleiten. Scheinfugen werden bis zur Hälfte der Estrichdicke (bei Heizestrichen höchstens bis zu 1/3 der Estrichdicke) von oben her mit einer Kelle angelegt und ausgebildet oder maschinell so früh wie möglich eingeschnitten. Statt den Estrich einzuschneiden, können vorzugsweise bei Fließestrichen Profile eingebaut werden, die den Estrichquerschnitt schwächen. Scheinfugen werden nach Austrocknung bis zur Belegreife z.B. mit einem Reaktionsharz kraftschlüssig geschlossen. Übernehmen Scheinfugen teilwei-

Tafel 14: Fugenabstände bei Zementestrichen auf Trennschicht im Innenbereich (Richtwerte in Anlehnung an [13])

Verkehrslast [kN/m²]	ständige Auflast [kN/m²]	Mindestdicke d des Estrichs [mm]	Maximaler Abstand für Schein- bzw. Bewegungsfugen [mm]
2,0	0	35	145 d
2,0	2	50	100 d
3,5	3,5	80	70 d
5,0	4	100	50 d

Tafel 15: Fugenabstände bei Zementestrichen auf Trennschicht im Freien (Richtwerte nach Lohmeyer entsprechend Empfehlungen für Betonböden)

Estrich auf Trennschicht	bei quadratischen Feldern	bei rechteckigen Feldern	
	Länge/Breite = 0,80 bis 1,25	Länge/Breite < 0,80 bzw. > 1,25	
maximaler Fugenabstand für Schein- oder Bewegungsfugen	33 d	30 d	

se die Funktion einer Bewegungsfuge (z.B. in Türdurchgängen unter keramischen Belägen), bleiben die Fugen offen.

Durch Einschneiden von Scheinfugen sollen möglichst gedrungene Felder mit einer Seitenlänge von bis zu 6 m gebildet werden. Bei unbeheizten Estrichen auf Trenn- oder Dämmschichten sollen die Estrichfeldgrößen 30 m² nicht wesentlich überschreiten. Bei beheizten Estrichen auf Dämmschichten sind unter Berücksichtigung der Eigenschaften der Belagstoffe ggfs. Estrichfeldgrößen von 40 m² bei Fugenabständen bis zu 8 m möglich. Ihr Seitenverhältnis darf maximal 1:2 betragen. Anhaltswerte für Fugenabstände bei (unbeheizten) Estrichen auf Trennschicht sind den Tafeln 14 und 15 zu entnehmen.

Besonders rissanfällig sind Estriche an Flächenversprüngen, Flächeneinschnürungen (Türdurchgänge), Aussparungen oder Stützen. Sie sind deswegen durch einen entsprechend abgestimmten Fugenverlauf zu entschärfen (Bild 11). Scheinfugen im Estrich auf Trennlage oder Dämmschicht haben nur dann einen Sinn, wenn der Estrich auf dem Untergrund gleiten kann.

Arbeitsfugen entstehen am Ende eines Arbeitsabschnittes, wenn z.B. die Tagesleistung bei großen Flächen erreicht wird oder zuerst der Estrich in Räumen und anschließend im Flur eingebaut wird. Arbeitsfugen werden entweder als Pressfuge oder als Bewegungsfuge ausgeführt.

Zur fachgerechten Ausführung der Fugen siehe [14] und [7]. Spezielle Hinweise zur Ausbildung von Fugen bei Industrie-estrichen siehe [15].

Bei Verbundestrichen ist es falsch, neben den Bauwerksfugen zusätzliche Fugen einzuschneiden. Der (verhältnismäßig dünne) Verbundestrich kann nur dann seine Aufgabe erfüllen, wenn ein vollkommen kraftschlüssiger Verbund zwischen Estrich und Tragbeton erreicht wird. Zusätzliche Fugen können diesen Verbund beeinträchtigen.

Der Bauwerksplaner hat entsprechend DIN 18560-2 einen Fugenplan zu erstellen. Darin sind Art und Ausführung aller Fugen einschließlich deren Verläufe vollständig anzugeben. Dieser Plan ist Bestandteil des Leistungsverzeichnisses und dem ausführenden Estrichleger sowie den Nachfolgegewerken vorzulegen.

■ 12 Herstellen und Verarbeiten einschl. Nachbehandlung

Vor der Herstellung des Estrichs sind alle baulichen Voraussetzungen für einen ungestörten Einbau des Estrichs zu schaffen. Dazu gehören insbesondere die Vermeidung von Zugluft und Maßnahmen gegen das Eindringen von Niederschlägen. Der tragende Untergrund darf keine punktförmige Erhebungen, Rohrleitungen o.ä. aufweisen, die zu Schallbrücken und/oder Schwankungen in den Estrichdicken führen können. Falls Rohrleitungen auf dem Untergrund verlegt sind, müssen diese fest installiert sein. Durch einen Ausgleich ist eine ebene Oberfläche zur Aufnahme z.B. der Dämmschicht zu schaffen.

Die Mörteltemperatur darf + 5 °C nicht unterschreiten und soll anschließend wenigstens drei Tage lang mindestens auf diesem Wert gehalten werden. Andererseits soll die Temperatur im Gebäude mindestens 7 Tage lang nicht, z.B. durch Beheizen, mehr als + 15 °C betragen. Höhere Innentemperaturen sowie schnelle und große Temperaturschwankungen erhöhen die Rissgefahr erheblich. Tiefere Temperaturen verzögern die Festigkeitsentwicklung

des Estrichmörtels und führen im Extremfall beim Gefrieren durch Gefügelockerungen infolge gefrierenden Wassers im erhärtenden Estrichmörtel zur Zerstörung des frisch verlegten Estrichs.

Die Ausgangsstoffe für die Estrichherstellung sollten abgewogen werden. Eine Estrichmörtelherstellung nach Raumteilen ist zwar auch möglich, sollte aber aufgrund der damit nur unzureichend genau erzielbaren Mischungszusammensetzung nur auf anspruchlose und kleine Estrichflächen beschränkt werden. In jedem Fall ist aber der Estrichmörtel maschinell zu mischen.

Beim versuchsweisen Mischen eines Estrichmörtels ohne festgelegte Zusammensetzung sollte zuerst ein Teil der Gesteinskörnungen, dann die vorgegebene Zement- und Wassermenge und zum Schluss soviel Gesteinskörnungen zugegeben werden, bis ein einbaufähiges Gemisch erreicht wird. So ergeben z.B. ein Eimer Wasser (10 Liter) und ein 25-kg-Sack Zement einen Wasserzementwert von etwa 0,40 bei trockener Gesteinskörnung. Definierte Eigenschaften nach DIN EN 13318 werden in der Regel nur mit Werktrockenmörtel oder fertig verarbeitbarem Werkfrischmörtel/Transportbeton erreicht, wofür dann entsprechende Liefernachweise aus einer zertifizierten Produktion erhältlich sind.

Der Estrichmörtel ist sofort nach dem Mischen bzw. innerhalb der angegebenen Verarbeitbarkeitszeit einzubauen. Nach Auslegen der Höhenlehren wird der Mörtel verteilt, abgezogen und sorgfältig verdichtet. Die Ebenheitsanforderungen nach DIN 18202 sind einzuhalten (siehe Tafel 7).

Nach dem Verdichten und höhengerechtem Abziehen ist die Oberfläche abzureiben bzw. abzuscheiben. Eine strukturierte Oberfläche, z.B. zur Verbesserung der Griffigkeit, kann mittels "Besenstrich" oder Riffelwalze hergestellt werden. Ein eventuelles Glätten (besondere Leistung nach DIN 18353 (VOB/C)) erfolgt erst, wenn die Gefahr des Hochziehens von Zementschlämme nicht mehr gegeben ist. Dies ist häufig dann der Fall, wenn die Estrichoberfläche noch matt-feucht erscheint. Bei größerem Zeitabstand zwischen Estricheinbau und Glätten kann eine Zwischennachbehandlung (Auflegen einer Folie) die Estrichqualität verbessern.

Nachträgliches Pudern der Estrichoberfläche mit Zement oder Aufbringen von Feinmörtel, um z.B. eine geschlossene Oberfläche zu erreichen, sind nicht zulässig. Höhere Zementleimgehalte und Wasserzementwerte führen zu verstärktem Schwinden dieser Schichten und fördern damit die Rissbildung und plattige Ablösungen an der Estrichoberfläche.

Der eingebaute Estrich ist mindestens 7 Tage lang vor Zugluft und Sonneneinstrahlung sowie Belastungen durch Gerüste und Baumaterialien zu bewahren. Als Schutz gegen zu rasches Austrocknen können Kunststoffolien aufgelegt oder – sofern keine Beschichtung des Estrichs oder anzuklebender Belag geplant ist – ein Nachbehandlungsmittel aufgesprüht werden. Im Freien sind bei extremen Temperaturen oder starken Temperaturschwankungen Wärmeschutzfolien oder -matten zu verwenden.

Mehlende, staubende oder absandende Oberflächen sind in der Regel auf eine ungenügende Nachbehandlung zurückzuführen. Feine Oberflächenrisse wie Haarrisse (Krakelee-Risse) sind meist auf Zugluft oder zu hohe Estrichtemperaturen zurückzuführen. Sie begründen keinen technischen Mangel, da sie die Tragfähigkeit und die Gebrauchstauglichkeit des Estrichs nicht beeinträchtigen. Tiefe oder durchgehende Risse, auch in Form von Netzrissbildung, können mit Reaktionsharzen, ggf. zusätzlich mit einer Vernadelung, kraftschlüssig festgelegt und geschlossen werden. Dieser Aufwand ist nur sinnvoll, wenn die Risse die Gebrauchstauglichkeit und Dauerhaftigkeit des Estrichs beeinträchtigen. Das Schließen oder Verfüllen von Rissen mit Reaktionsharzen verschlechtert i.A. das optische Erscheinungsbild der Oberfläche.

■ 13 Nutzungsbeginn und Belegreife (Trocknen, Schnellestriche)

Wenn keine besonderen Maßnahmen getroffen werden, können Zementestriche nach etwa 2 bis 3 Tagen begangen werden. Eine volle Belastung ist nach etwa 10 Tagen möglich.

Zementestriche dürfen erst belegt werden, wenn sie ausreichend trocken sind. Die zulässigen Feuchten sind in Tafel 16 zusammengestellt. Einzelheiten, insbesondere auch zur genauen Prüfung der zulässigen Feuchte, sind in [16] und [10] enthalten.

Die Trocknungszeit von Estrichen wird im Wesentlichen von den klimatischen Bedingungen auf der Baustelle bestimmt. Temperatur, Luftfeuchte sowie der Luftwechsel sind bestimmende Faktoren. Bei ungünstigen Witterungsverhältnissen kann das Austrocknen behindert werden. In Extremfällen (hohe Temperaturen bei hoher relativer Luftfeuchte) kann es sogar zu einer Anreicherung der Feuchte im Estrich durch Kondensation kommen. Insofern sind die zuvor angegebenen Zeiten der Belegreife durch Feuchtemessungen zu bestätigen.

Zur Beschleunigung der Austrocknung ist für einen guten Luftwechsel zu sorgen (keine Zugluft!). Bei größeren Estrichdicken können besondere Maßnahmen wie Heizen oder Entfeuchten mit Kondensationstrocknern o.ä. notwendig werden [17].

Zementestriche können durch Verwendung schnell erhärtender Zemente oder durch Zugabe von Zusätzen und ggf. Fasern die in Tafel 16 angegebenen Fristen für die Begehbarkeit und das Erreichen der Belegreife deutlich unterschreiten. Eine schnellere Belegreife wird im Wesentlichen durch eine Verringerung des Anmachwassers im Estrichmörtel erzielt. Die Verarbeitung schnellerhärtender Estriche erzeugt allerdings einen erhöhten Zeitdruck für den Estrichleger, da die Erhärtungsphase wesentlich früher als bei üblichen Zementestrichen beginnt. Sie sind aus arbeitstechnischen Gründen nur für kleinteilige Flächen und geringe Estrichdicken zu empfehlen und nur sinnvoll, wenn sichergestellt ist, dass die Beläge kurz nach der Estrichherstellung auch tatsächlich eingebaut werden. Zum Belegreifheizen siehe Abschnitt "Heizestriche"

■ 14 Nachweis der Güte, Prüfungen

Für die Prüfung und Festlegung der Eigenschaften des Estrichmörtels wird entsprechend DIN 18560 je nach Art und Zweck der Prüfung unterschieden in

- Eingangsprüfung
- Erstprüfung
- Prüfung der werkseigenen Produktionskontrolle (WPK)
- Erhärtungsprüfung

Eingangsprüfung

Die Ausgangsstoffe für die Herstellung des Estrichmörtels (Zement, Gesteinskörnung) sind bei der Anlieferung zu überprüfen. Beim Zement betrifft dies die Angaben auf der Verpackung bzw. dem Lieferschein über Art, Festigkeitsklasse und den Vermerk bzgl. der Fremdüberwachung. Für die Gesteinskörnung ist eine visuelle Prüfung im Hinblick auf Korngröße, Kornform, Zusammensetzung und Verunreinigung vorzunehmen. In Zweifelsfällen sind Kontrollprüfungen durchzuführen. Zusätze müssen genormt oder bauaufsichtlich zugelassen sein. Wird Werk-Trockenmörtel oder auch Werk-Frischmörtel für die Herstellung von Estrich verwendet, werden die erforderlichen

Tafel 16: Nutzungsbeginn und Belegreife von Zementestrichen

begehbar nach	≈ 2 bis 3 Tagen
belastbar nach	≈ 10 Tagen 1)
belegbar nach	≈ 28 Tagen ²⁾
Belegreife für beheizte Estriche mit elastischen und textilen Boden- belägen, Laminat, Parkett und Holzpflaster	≤ 1,8 [M%] Feuchte des Estrichs ³⁾
Belegreife für keramische Beläge auf beheizten oder unbeheizten Estrichen	≤ 2,0 [M%] Feuchte des Estrichs ³⁾
Belegreife für unbeheizte Estriche mit elastischen und textilen Bodenbelägen, Laminat, Parkett und Holzpflaster	≤ 2,0 [M%] Feuchte des Estrichs ³⁾
Belegreife für dampfdurchlässige textile Beläge bzw. Fliesen/Naturstein / Betonwerkstein im Dickbett, Estrich beheizt und unbeheizt	≤ 3,0 [M%] Feuchte des Estrichs ³⁾

¹⁾ Bei Verwendung von Zement der Festigkeitsklasse CEM 42,5: ≈ 7 Tage

Tafel 17: Bestätigungsprüfungen zementgebundener Estriche nach DIN 18560

	•				
Art des Estrichs	Art und Erfordernis der Prüfung an Proben aus dem Bauwerk				
	Biegezugfestigkeit	Druckfestigkeit	Schleifverschleiß	Dicke	
Verbundestrich	ja (bei Nenndicke < 40 mm)	ja (bei Nenndicke ≥ 40 mm)	ja	ja	
Estrich auf Trennschicht	ja	-	ja	ja	
Estrich und Heizestriche auf Dämmschichten 1)	ja	-	-	ja	
Hartstoffestrich	ia	-	ia	_	

¹⁾ Zusätzliche Eignungsprüfung erforderlich, wenn Mindestdicken nach Tafel 11 unterschritten sind, bzw. bei Verkehrslasten > 5 kN/m²

²⁾ Grober Anhaltswert. Gilt für Estrichdicken bis 50 mm; bei dickeren Estrichen mindestens ≈ 5 Tage/cm Mehrdicke zurechnen. Zur Kontrolle Feuchtigkeitsmessung durchführen.

³⁾ Feuchtigkeitsgehalte gelten bei Messung mit CM-Gerät (Calciumcarbid-Methode), siehe [16]; [10]

Überprüfungen der Ausgangsstoffe und die Prüfungen des Festmörtels im Rahmen der werkseigenen Produktionskontrolle (Hersteller) und der Fremdüberwachung (Hersteller, Verarbeiter) in DIN 13813 geregelt.

Erstprüfung

Durch die Erstprüfung soll vor der Verwendung des Estrichmörtels nachgewiesen werden, dass mit den zu verwendenden Ausgangsstoffen die vom Hersteller (TB-Werk oder Estrichleger) zugesagten Eigenschaften auch erfüllt werden. Erstprüfungen sind für alle Estriche der Festigkeitsklasse ≥ C40 durchzuführen. Dies gilt auch bei Estrichmörteln niedrigerer Festigkeitsklassen, wenn keine ausreichenden Erfahrungen mit diesen vorliegen oder mit Zusätzen gearbeitet wird. Ändern sich die Estrichausgangsstoffe (z.B. Wechsel des Zementes) oder die Baustellenverhältnisse wesentlich, so ist eine neue Erstprüfung erforderlich.

Werkseigene Produktionskontrolle (WPK)

Sie umfasst die Kontrolle des Herstellungsprozesses und die Prüfung des Estrichmörtels. Sie gilt nur für Werk-Trockenmörtel und Werk-Frischmörtel. Eine WPK ist nach Vereinbarung durchzuführen. Sie erfolgt an Proben, die während der Estrichherstellung entnommen werden. Proben werden mindestens alle sieben Arbeitstage bzw. pro 1 000 m² Estrichfläche zur Herstellung von je drei Probekörpern entnommen (maßgebend ist die Anforderung, die die größere Anzahl an Proben ergibt).

Der Hersteller von Estrichmörtel (Werktrockenmörtel) darf diesen mit einem CE-Zeichen kennzeichnen, wenn er zu allen wesentlichen mandatierten Eigenschaften in einer Konformitätserklärung Angaben gemäß DIN EN 13813 gemacht hat.

Erhärtungsprüfung

Erhärtungsprüfungen sind nur im Ausnahmefall erforderlich, z.B. um die Gebrauchsfähigkeit eines Estrichs zu einem bestimmten Zeitpunkt abzuschätzen. Dazu sind mindestens drei Probekörper aus dem Estrichmörtel des betreffenden Bauabschnittes herzustellen und diese unmittelbar neben oder auf dem eingebauten Estrich zu lagern und wie diesen nachzubehandeln. Zu den Prüfverfahren siehe Tafel 3.

Bestätigungsprüfungen

Die Prüfung des eingebauten Estrichs erfolgt durch Bestätigungsprüfungen (Tafel 17). Sie dienen dem Nachweis der Dicke, der Festigkeit oder z.B. des Verschleißwiderstandes. Bestätigungsprüfungen werden durchgeführt, wenn erhebliche Zweifel an der Güte des Estrichs im Bauwerk bestehen. Einzelheiten zur Durchführung der Bestätigungsprüfungen sind den jeweils zutreffenden Teilen der DIN 18650 zu entnehmen.

■ 15 Normen

- DIN EN 197 Zement
- DIN 488 Betonstahl
- DIN 1045 Tragwerke aus Beton, Stahlbeton und Spannbeton
- DIN 1100 Hartstoffe für zementgebundene Hartstoffestriche
 Anforderungen und Prüfverfahren
- DIN 1164 Zement mit besonderen Eigenschaften
- DIN EN 1264 Raumflächenintegrierte Heiz- und Kühlsysteme mit Wasserdurchströmung
- DIN 4108 Teil 4 Wärmeschutz und Energieeinsparung in Gebäuden – Anwendungsbezogene Anforderungen an Wärmedämmstoffe – werkmäßig hergestellte Wärmedämmstoffe

- DIN EN 12620 Gesteinskörnungen für Beton
- DIN EN 13318 Estrichmörtel und Estriche Begriffe
- DIN EN 13813 Estrichmörtel und Estrichmassen Eigenschaften und Anforderungen
- DIN EN 13892 Prüfverfahren für Estrichmörtel und Estrichmassen
- DIN 18202 Toleranzen im Hochbau Bauwerke
- DIN 18353 VOB Teil C: ATV Estricharbeiten
- DIN 18380 VOB Teil C: ATV Heizanlagen und zentrale Wasserwärmungsanlagen
- DIN 18560 Estriche im Bauwesen:
 - Teil 1 Begriffe, Allgemeine Anforderungen, Prüfungen
 - Teil 2 Estriche und Heizestriche auf Dämmschichten (Schwimmende Estriche)
 - Teil 3 Verbundestriche
 - Teil 4 Estriche auf Trennschicht
 - Teil 7 Hochbeanspruchbare Estriche (Industrieestriche)

■ 16 Literatur

- [1] AGI-Arbeitsblatt A 12 Teil 1: Industrieestriche Ergänzungen zur DIN 18560, Zementestrich, zementgebundener Hartstoffestrich, 1997
- [2] DBV Merkblatt Industrieböden aus Beton für Frei- und Hallenflächen, 2004
- [3] Lohmeyer, G.: Wissenswertes über Zementestriche, Fliesen und Platten, Heft 6/82
- [4] BEB Merkblatt Hinweise zur Verlegung von dicken Zement-Verbundestrichen, Bundesverband Estriche und Belag e.V. Troisdorf, 2008
- [5] Nestle, H. et al.: Bautechnik Fachkunde Bau, Verlag Europa-Lehrmittel, Haan-Gruiten, 13. Auflage 2008
- [6] Handbuch für das Estrich- und Belaggewerbe, Hrsg.: Bundesverband Estrich und Belag im Zentralverband des Deutschen Baugewerbes e. V., Bundesverband Estrich und Belag e.V. und Bundesfachschule Estrich und Belag e.V., R. Müller Verlag, Köln, 3. Auflage, 2005
- [7] Timm, H.: Estriche und Bodenbeläge Arbeitshilfen für die Planung, Ausführung und Beurteilung, Vieweg + Teubner Verlag, Wiesbaden, 4. Auflage 2010
- [8] BEB Merkblatt Vorbereitende Maßnahmen zur Verlegung von Oberbodenbelägen auf Zement- und Calciumsulfatheizestrichen (Merkblatt FBH-M2), 2/2005
- [9] BEB Protokoll zum Funktionsheizen für Calciumsulfatund Zementestriche als Funktionsprüfung für Fußbodenheizungen (Dokumentation FBH-D3), 2/2005
- [10] Merkblatt des Fachverbandes Deutsches Fliesengewerbe im Zentralverband des Deutschen Baugewerbes e.V. Keramische Fliesen und Platten, Naturwerkstein und Betonwerkstein auf zementgebundenen Fußbodenkonstruktionen mit Dämmschichten, 2007
- [11] VDB-Leitfaden 1: Leitfaden für den Einbau von zementgebundenen Fließestrichen, 10/2000

- [12] Heeß, S.: Gestaltete und farbige Zementestriche im Wohnungs- und Gewerbebau, opusC, Heft 2/2006
- [13] Lohmeyer, G.: Hochbeanspruchbare Zementestriche, Fußbodentechnik, Heft 3/1998
- [14] BEB Merkblatt Hinweise für Fugen in Estrichen, Teil 2, Fugen in Estrichen und Heizestrichen auf Trenn- und Dämmschichten nach DIN 18560 Teil 2 und Teil 4, Bundesverband Estriche und Belag e.V. Troisdorf, 2009
- [15] BEB Merkblatt Hinweise für Fugen in Estrichen, Teil 1, Fugen in Industrieestrichen, Bundesverband Estriche und Belag e.V. Troisdorf, 1992
- [16] BEB Merkblatt Beurteilen und Vorbereiten von Untergründen – Verlegen von elastischen und textilen Bodenbelägen, Schichtstoffelementen (Laminat), Parkett und Holzpflaster – Beheizte und unbeheizte Fußbodenkonstruktionen, Bundesverband Estriche und Belag e.V. Troisdorf, 2008

- [17] BEB Merkblatt Bauklimatische Voraussetzungen zur Trocknung von Estrichen, 2009
- [18] Zementmerkblatt Tiefbau T 1: Industrieböden aus Beton, Verein Deutscher Zementwerke, Düsseldorf, 1/2006
- [19] Leitfaden zur Herstellung von Zementestrichmörteln im Innenbereich, Verein Deutscher Zementwerke und Bundesverband Estrich und Belag, 2009
- [20] Hinweise zur Herstellung zementgebundener Estriche, Verein Deutscher Zementwerke, Bundesverband Estrich und Belag und Zentralverband Deutsches Baugewerbe

Beratung und Information zu allen Fragen der Betonanwendung

Regionale Ansprechpartner

www.beton.org

BetonMarketing Nordost GmbH

Anderter Str. 99D, 30559 Hannover, Tel.: 0511 554707-0, hannover@betonmarketing.de Teltower Damm 155, 14167 Berlin, Tel.: 030 3087778-0, berlin@betonmarketing.de

BetonMarketing Süd GmbH

Gerhard-Koch-Straße 2+4, 73760 Ostfildern, Tel.: 0711 32732-200, info@betonmarketing.de Büro München: Beethovenstraße 8, 80336 München, Tel.: 089 450984-0, info@betonmarketing.de

BetonMarketing West GmbH

Neustraße 1, 59269 Beckum, Tel.: 02521 8730-0, info@bmwest.de

Herausgeber: Verein Deutscher Zementwerke e.V., Tannenstraße 2, 40476 Düsseldorf

Verfasser: Dipl.-Ing. Wolfgang Schäfer, BetonMarketing Nordost

www.vdz-online.de

